Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.057
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612870

RESUMO

Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD) that is characterized by systemic immune system activation. This study was performed to assess the alleviative effect of administering an aqueous extract of Eucommia ulmoides leaves (AEEL) on cognitive dysfunction in mice with dextran sulfate sodium (DSS)-induced colitis. The major bioactive compounds of AEEL were identified as a quinic acid derivative, caffeic acid-O-hexoside, and 3-O-caffeoylquinic acid using UPLC Q-TOF/MSE. AEEL administration alleviated colitis symptoms, which are bodyweight change and colon shortening. Moreover, AEEL administration protected intestinal barrier integrity by increasing the tight junction protein expression levels in colon tissues. Likewise, AEEL improved behavioral dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. Additionally, AEEL improved short-chain fatty acid (SCFA) content in the feces of DSS-induced mice. In addition, AEEL improved damaged cholinergic systems in brain tissue and damaged mitochondrial and antioxidant functions in colon and brain tissues caused by DSS. Also, AEEL protected against DSS-induced cytotoxicity and inflammation in colon and brain tissues by c-Jun N-terminal kinase (JNK) and the toll-like receptor 4 (TLR4) signaling pathway. Therefore, these results suggest that AEEL is a natural material that alleviates DSS-induced cognitive dysfunction with the modulation of gut-brain interaction.


Assuntos
Disfunção Cognitiva , Colite , Eucommiaceae , Animais , Camundongos , Sulfato de Dextrana/efeitos adversos , Receptor 4 Toll-Like , Colite/induzido quimicamente , Colite/tratamento farmacológico , Ácido Clorogênico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico
2.
J Transl Med ; 22(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566233

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Assuntos
Artrite , Doenças Autoimunes , Colite , Animais , Camundongos , Artrite/metabolismo , Artrite/patologia , Doenças Autoimunes/metabolismo , Diferenciação Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17
3.
J Transl Med ; 22(1): 369, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637862

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD), dysbiosis, and immunosuppression who receive fecal microbiota transplantation (FMT) from healthy donors are at an increased risk of developing bacteremia. This study investigates the efficacy of a mixture of seven short-chain fatty acid (SCFA)-producing bacterial strains (7-mix), the resulting culture supernatant mixture (mix-sup), and FMT for treating experimental ulcerative colitis (UC) and evaluates underlying mechanisms. METHODS: Utilizing culturomics, we isolated and cultured SCFA-producing bacteria from the stool of healthy donors. We used a mouse model of acute UC induced by dextran sulfate sodium (DSS) to assess the effects of 7-mix, mix-sup, and FMT on intestinal inflammation and barrier function, microbial abundance and diversity, and gut macrophage polarization by flow cytometry, immunohistochemistry, 16S rRNA gene sequencing, and transwell assays. RESULTS: The abundance of several SCFA-producing bacterial taxa decreased in patients with UC. Seven-mix and mix-sup suppressed the inflammatory response and enhanced intestinal mucosal barrier function in the mouse model of UC to an extent similar to or superior to that of FMT. Moreover, 7-mix and mix-sup increased the abundance of SCFA-producing bacteria and SCFA concentrations in colitic mice. The effects of these interventions on the inflammatory response and gut barrier function were mediated by JAK/STAT3/FOXO3 axis inactivation in macrophages by inducing M2 macrophage polarization in vivo and in vitro. CONCLUSIONS: Our approach provides new opportunities to rationally harness live gut probiotic strains and metabolites to reduce intestinal inflammation, restore gut microbial composition, and expedite the development of safe and effective treatments for IBD.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Fator de Transcrição STAT3 , Humanos , Camundongos , Animais , Colite Ulcerativa/terapia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Modelos Animais de Doenças , Inflamação , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colo , Proteína Forkhead Box O3/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1266-1274, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621974

RESUMO

This paper investigates the intervention effect and mechanism of Banxia Xiexin Decoction(BXD) on colitis-associated colorectal cancer(CAC) infected with Fusobacterium nucleatum(Fn). C57BL/6 mice were randomly divided into a control group, Fn group, CAC group [azoxymethane(AOM)/dextran sulfate sodium salt(DSS)](AOM/DSS), model group, and BXD group. Except for the control and AOM/DSS groups, the mice in the other groups were orally administered with Fn suspension twice a week. The AOM/DSS group, model group, and BXD group were also injected with a single dose of 10 mg·kg~(-1) AOM combined with three cycles of 2.5% DSS taken intragastrically. The BXD group received oral administration of BXD starting from the second cycle until the end of the experiment. The general condition and weight changes of the mice were monitored during the experiment, and the disease activity index(DAI) was calculated. At the end of the experiment, the colon length and weight of the mice in each group were compared. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissue. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-2, IL-4, and IL-6 inflammatory factors in the serum. Immunohistochemistry(IHC) was used to detect the expression of Ki67, E-cadherin, and ß-catenin in the colon tissue. Western blot was used to detect the protein content of Wnt3a, ß-catenin, E-cadherin, annexin A1, cyclin D1, and glycogen synthase kinase-3ß(GSK-3ß) in the colon tissue. The results showed that compared with the control group, the Fn group had no significant lesions. The mice in the AOM/DSS group and model group had decreased body weight, increased DAI scores, significantly increased colon weight, and significantly shortened colon length, with more significant lesions in the model group. At the same time, the colon histology of the model group showed more severe adenomas, inflammatory infiltration, and cellular dysplasia. The levels of IL-4 and IL-6 in the serum were significantly increased, while the IL-2 content was significantly decreased. The IHC results showed low expression of E-cadherin and high expression of Ki67 and ß-catenin in the model group, with a decreased protein content of E-cadherin and GSK-3ß and an increased protein content of Wnt3a, ß-catenin, annexin A1, and cyclin D1. After intervention with BXD, the body weight of the mice increased; the DAI score decreased; the colon length increased, and the tumor decreased. The histopathology showed reduced tumor proliferation and reduced inflammatory infiltration. The levels of IL-6 and IL-4 in the serum were significantly decreased, while the IL-2 content was increased. Meanwhile, the expression of E-cadherin was upregulated, and that of Ki67 and ß-catenin was downregulated. The protein content of E-cadherin and GSK-3ß increased, while that of Wnt3a, ß-catenin, annexin A1, and cyclin D1 decreased. In conclusion, BXD can inhibit CAC infected with Fn, and its potential mechanism may be related to the inhibition of Fn binding to E-cadherin, the decrease in annexin A1 protein level, and the regulation of the Wnt/ß-catenin pathway.


Assuntos
Anexina A1 , Neoplasias Associadas a Colite , Colite , Medicamentos de Ervas Chinesas , Camundongos , Animais , Colite/complicações , Colite/tratamento farmacológico , Colite/genética , beta Catenina/genética , beta Catenina/metabolismo , Ciclina D1/metabolismo , Fusobacterium nucleatum/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Caderinas/metabolismo , Peso Corporal , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Azoximetano
5.
Nutrients ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474712

RESUMO

The dysregulation of the intestinal epithelial barrier significantly contributes to the inflammatory progression of ulcerative colitis. Recent studies have indicated that lactate, produced by gut bacteria or derived from fermented foods, plays a key role in modulating inflammation via G-protein-coupled receptor 81 (GPR81). In this study, we aimed to investigate the potential role of GPR81 in the progression of colitis and to assess the impact of lactate/GPR81 signaling on intestinal epithelial barrier function. Our findings demonstrated a downregulation of GPR81 protein expression in patients with colitis. Functional verification experiments showed that Gpr81-deficient mice exhibited more severe damage to the intestinal epithelial barrier and increased susceptibility to DSS-induced colitis, characterized by exacerbated oxidative stress, elevated inflammatory cytokine secretion, and impaired expression of tight-junction proteins. Mechanistically, we found that lactate could suppress TNF-α-induced MMP-9 expression and prevent the disruption of tight-junction proteins by inhibiting NF-κB activation through GPR81 in vitro. Furthermore, our study showed that dietary lactate could preserve intestinal epithelial barrier function against DSS-induced damage in a GPR81-dependent manner in vivo. Collectively, these results underscore the crucial involvement of the lactate/GPR81 signaling pathway in maintaining intestinal epithelial barrier function, providing a potential therapeutic strategy for ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Humanos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Ácido Láctico/metabolismo , Mucosa Intestinal/metabolismo , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo , NF-kappa B/metabolismo
6.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474831

RESUMO

Ulcerative colitis (UC) is a global intestinal disease, and conventional therapeutic drugs often fail to meet the needs of patients. There is an urgent need to find efficient and affordable novel biological therapies. Saccharomyces boulardii has been widely used in food and pharmaceutical research due to its anti-inflammatory properties and gut health benefits. However, there is still a relatively limited comparison and evaluation of different forms of S. boulardii treatment for UC. This study aimed to compare the therapeutic effects of S. boulardii, heat-killed S. boulardii, and S. boulardii ß-glucan on UC, to explore the potential of heat-killed S. boulardii as a new biological therapy. The results demonstrate that all three treatments were able to restore body weight, reduce the disease activity index (DAI), inhibit splenomegaly, shorten colon length, and alleviate histopathological damage to colonic epithelial tissues in DSS-induced colitis mice. The oral administration of S. boulardii, heat-killed S. boulardii, and S. boulardii ß-glucan also increased the levels of tight junction proteins (Occludin and ZO-1), decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in the serum, and suppressed the expressions of TNF-α, IL-1ß, and IL-6 mRNA in the colon. In particular, in terms of gut microbiota, S. boulardii, heat-killed S. boulardii, and S. boulardii ß-glucan exhibited varying degrees of modulation on DSS-induced dysbiosis. Among them, heat-killed S. boulardii maximally restored the composition, structure, and functionality of the intestinal microbiota to normal levels. In conclusion, heat-killed S. boulardii showed greater advantages over S. boulardii and S. boulardii ß-glucan in the treatment of intestinal diseases, and it holds promise as an effective novel biological therapy for UC. This study is of great importance in improving the quality of life for UC patients and reducing the burden of the disease.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Saccharomyces boulardii , beta-Glucanas , Humanos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Fator de Necrose Tumoral alfa/efeitos adversos , Interleucina-6 , Temperatura Alta , Qualidade de Vida , Inflamação/induzido quimicamente , Colite/induzido quimicamente , Colo/metabolismo , beta-Glucanas/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542929

RESUMO

The oral delivery strategy of natural anti-oxidant and anti-inflammatory agents has attracted great attention to improve the effectiveness of ulcerative colitis (UC) treatment. Herein, we developed a novel orally deliverable nanoparticle, carboxymethyl chitosan (CMC)-modified astaxanthin (AXT)-loaded nanoparticles (CMC-AXT-NPs), for UC treatment. The CMC-AXT-NPs were evaluated by appearance, morphology, particle size, ζ-potential, and encapsulation efficiency (EE). The results showed that CMC-AXT-NPs were nearly spherical in shape with a particle size of 34.5 nm and ζ-potential of -30.8 mV, and the EE of CMC-AXT-NPs was as high as 95.03%. The CMC-AXT-NPs exhibited preferable storage stability over time and well-controlled drug-release properties in simulated intestinal fluid. Additionally, in vitro studies revealed that CMC-AXT-NPs remarkably inhibited cytotoxicity induced by LPS and demonstrated superior antioxidant and anti-inflammatory abilities in Raw264.7 cells. Furthermore, CMC-AXT-NPs effectively alleviated clinical symptoms of colitis induced by dextran sulfate sodium salt (DSS), including maintaining body weight, inhibiting colon shortening, and reducing fecal bleeding. Importantly, CMC-AXT-NPs suppressed the expression of pro-inflammatory cytokines like TNF-α, IL-6, and IL-1ß and ameliorated DSS-induced oxidative damage. Our results demonstrated the potential of CMC-modified nanoparticles as an oral delivery system and suggested these novel AXT nanoparticles could be a promising strategy for UC treatment.


Assuntos
Quitosana , Colite Ulcerativa , Colite , Nanopartículas , Humanos , Colite Ulcerativa/induzido quimicamente , Quitosana/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Colite/tratamento farmacológico , Xantofilas
8.
Int J Biol Macromol ; 265(Pt 1): 130863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490380

RESUMO

This study investigated the regulatory effects of Sporisorium reilianum polysaccharides (SRPS) on metabolism and the intestinal barrier in mice with colitis induced by dextran sulfate sodium (DSS). SRPS were resistant to the digestion of saliva, gastric juices, and intestinal fluid. SRPS significantly reduced the disease activity index and inhibited DSS-induced colon shortening. The expression of proinflammatory cytokines in the colon was normal (P < 0.05). Acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid contents increased. Moreover, 64 biomarker metabolites were affected, including 42 abnormal decreases and 22 abnormal increases caused by DSS, which targeted amino acid biosynthesis; tryptophan metabolism; protein digestion and absorption; aminoacyl-tRNA biosynthesis; and glycine, serine, and threonine metabolism. In addition, SRPS reduced goblet cell loss and increased mucin secretion. The short-chain fatty acid receptor GPR41 was activated, and zonula occludens-1 and occludin expression levels were upregulated. Epithelial cell apoptosis was inhibited by increased Bcl-2 and decreased Bax expression NLRP3, ASC, and caspase-1 protein levels decreased. Intestinal barrier damage improved, and colon inflammation was reduced. Thus, our preliminary findings reveal that SRPS regulates metabolism and has the potential to protect the intestinal barrier in ulcerative colitis mice.


Assuntos
Basidiomycota , Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , 60435 , Mucosa Intestinal/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Polissacarídeos/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
9.
Food Funct ; 15(7): 3731-3743, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489162

RESUMO

Pleurotus tuber-regium (PTR) has been proved to have obvious pharmacological properties. In this study, a polysaccharide was extracted from the mycelium of PTR and administered to DSS-induced colitis mice to clarify the protective effect and mechanism of the PTR polysaccharide (PTRP) on colitis. The results showed that PTRP significantly improved the clinical symptoms and intestinal tissue damage caused by colitis and inhibited the secretion of pro-inflammatory cytokines and myeloperoxidase activity, while the levels of oxidative stress factors in mice decreased and the antioxidant capacity increased. The 16S rRNA sequencing of the mouse cecum content showed that PTRP changed the composition of gut microbiota, and the diversity and abundance of beneficial bacteria increased. In addition, PTRP also enhanced the production of short-chain fatty acids by regulating gut microbiota. In conclusion, our study shows that PTRP has the potential to relieve IBD symptoms and protect intestinal function by regulating inflammatory cytokines, oxidative stress and gut microbiota.


Assuntos
Colite , Microbioma Gastrointestinal , Pleurotus , Camundongos , Animais , Citocinas/metabolismo , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Estresse Oxidativo , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Micélio/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
10.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542269

RESUMO

Inflammatory bowel diseases are extremely common throughout the world. However, in most cases, it is asymptomatic at the initial stage. Therefore, it is important to develop non-invasive diagnostic methods that allow identification of the IBD risks in a timely manner. It is well known that gastrointestinal microbiota secrete volatile compounds (VOCs) and their composition may change in IBD. We propose a non-invasive method to identify the dynamics of IBD development in the acute and remission stage at the level of VOCs in model of dextran sulfate sodium (DSS) with chemically induced colitis measured by headspace GC/MS (HS GC/MS). Methods: VOCs profile was identified using a headspace GC/MS (HS GC/MS). GC/MS data were processed using MetaboAnalyst 5.0 and GraphPad Prism 8.0.1 software. The disease activity index (DAI) and histological method were used to assess intestinal inflammation. The peak of intestinal inflammation activity was reached on day 7, according to the disease activity index. Histological examination data showed changes in the intestine due to different stages of inflammation. As the acute inflammation stage was reached, the metabolomic profile also underwent changes, especially at the short-fatty acids level. A higher relative amounts of acetic acid (p value < 0.025) and lower relative amounts of propanoic acid (p value < 0.0005), butanoic acid (p value < 0.005) and phenol 4-methyl- (p value = 0.053) were observed in DSS7 group on day 7 compared to the control group. In remission stage, disease activity indexes decreased, and the histological picture also improved. But metabolome changes continued despite the withdrawal of the DSS examination. A lower relative amounts of propanoic acid (p value < 0.025), butanoic acid (p value < 0.0005), pentanoic acid (p value < 0.0005), and a significant de-crease of hexanoic acid (p value < 0.0005) relative amounts were observed in the DSS14 group compared to the control group on day 14. A model of DSS-induced colitis in rats was successfully implemented for metabolomic assessment of different stages of inflammation. We demonstrated that the ratios of volatile compounds change in response to DSS before the appearance of standard signs of inflammation, determined by DAI and histological examination. Changes in the volatile metabolome persisted even after visual intestine repair and it confirms the high sensitivity of the microbiota to the damaging effects of DSS. The use of HS GC/MS may be an important addition to existing methods for assessing inflammation at early stages.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ratos , Animais , Camundongos , Propionatos/efeitos adversos , Cromatografia Gasosa-Espectrometria de Massas , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/diagnóstico , Colite/patologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/patologia , Butiratos/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colo/patologia
11.
J Agric Food Chem ; 72(13): 7397-7410, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38528736

RESUMO

This study was designed to elucidate the colon microbiota-targeted release of nonextractable bound polyphenols (NEPs) derived from Fu brick tea and to further identify the possible anti-inflammatory mechanism in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. 1.5% DSS drinking water-induced C57BL/6J mice were fed rodent chow supplemented with or without 8% NEPs or dietary fibers (DFs) for 37 days. The bound p-hydroxybenzoic acid and quercetin in NEPs were liberated up to 590.5 ± 70.6 and 470.5 ± 51.6 mg/g by in vitro human gut microbiota-simulated fermentation, and released into the colon of the mice supplemented with NEPs by 4.4- and 1.5-fold higher than that of the mice supplemented without NEPs, respectively (p < 0.05). Supplementation with NEPs also enhanced the colonic microbiota-dependent production of SCFAs in vitro and in vivo (p < 0.05). Interestingly, Ingestion of NEPs in DSS-induced mice altered the gut microbiota composition, reflected by a dramatic increase in the relative abundance of Dubosiella and Enterorhabdus and a decrease in the relative abundance of Alistipes and Romboutsia (p < 0.05). Consumption of NEPs was demonstrated to be more effective in alleviating colonic inflammation and UC symptoms than DFs alone in DSS-treated mice (p < 0.05), in which the protective effects of NEPs against UC were highly correlated with the reconstruction of the gut microbiome, formation of SCFAs, and release of bound polyphenols. These findings suggest that NEPs as macromolecular carriers exhibit targeted delivery of bound polyphenols into the mouse colon to regulate gut microbiota and alleviate inflammation.


Assuntos
Colite Ulcerativa , Colite , Microbiota , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Inflamação/tratamento farmacológico , Fibras na Dieta , Polifenóis , Colo , Chá , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico
12.
J Agric Food Chem ; 72(14): 7882-7893, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530797

RESUMO

IL-1ß is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1ß-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1ß-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1ß and IL-1R by directly binding to IL-1ß and inhibited the IL-1ß activity. It suppressed IL-1ß-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1ß-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1ß activity and anticolitis effect by hindering the IL-1ß and IL-1R interaction and may be a promising therapeutic anti-IL-1ß agent for IBD treatment.


Assuntos
Colite , Glucosídeos , Taninos Hidrolisáveis , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Células CACO-2 , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo
13.
J Food Sci ; 89(4): 2450-2464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462851

RESUMO

Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Metabólicas , Animais , Camundongos , Lactobacillus , Colite Ulcerativa/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , RNA Ribossômico 16S , Ácido Butírico , Bifidobacterium , Firmicutes , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
14.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474305

RESUMO

Patients with inflammatory bowel disease (IBD) who experience long-term chronic inflammation of the colon are at an increased risk of developing colorectal cancer (CRC). Mitotic spindle positioning (MISP), an actin-binding protein, plays a role in mitosis and spindle positioning. MISP is found on the apical membrane of the intestinal mucosa and helps stabilize and elongate microvilli, offering protection against colitis. This study explored the role of MISP in colorectal tumorigenesis using a database, human CRC cells, and a mouse model for colitis-induced colorectal tumors triggered by azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment. We found that MISP was highly expressed in colon cancer patient tissues and that reduced MISP expression inhibited cell proliferation. Notably, MISP-deficient mice showed reduced colon tumor formation in the AOM/DSS-induced colitis model. Furthermore, MISP was found to form a complex with Opa interacting protein 5 (OIP5) in the cytoplasm, influencing the expression of OIP5 in a unidirectional manner. We also observed that MISP increased the levels of phosphorylated STAT3 in the JAK2-STAT3 signaling pathway, which is linked to tumorigenesis. These findings indicate that MISP could be a risk factor for CRC, and targeting MISP might provide insights into the mechanisms of colitis-induced colorectal tumorigenesis.


Assuntos
Colite , Neoplasias Colorretais , Animais , Humanos , Camundongos , Azoximetano/efeitos adversos , Carcinogênese , Transformação Celular Neoplásica , Colite/patologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Janus Quinase 2/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fuso Acromático/metabolismo , Fator de Transcrição STAT3/metabolismo
15.
J Agric Food Chem ; 72(11): 5784-5796, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38447175

RESUMO

Adherent-invasive Escherichia coli plays an important role in the pathogenesis of inflammatory bowel disease. Blocking the adhesion of E. coli to intestinal epithelial cells appears to be useful for attenuating inflammatory bowel disease. Lycopene has been reported to have anti-inflammatory and antimicrobial activities. The aim of this study was to test the intervention effect of lycopene on colitis in mice and to investigate the possible mechanism through which lycopene affects the adhesion of E. coli to intestinal epithelial cells. Lycopene (12 mg/kg BW) attenuated dextran sulfate sodium (DSS)-induced colitis, decreased the proportion of E. coli, and activated the NLR family pyrin domain containing 12 and inactivated nuclear factor kappa B pathways. Furthermore, lycopene inhibited the adhesion of E. coli O157:H7 to Caco-2 cells by blocking the interaction between E. coli O157:H7 and integrin ß1. Lycopene ameliorated DSS-induced colitis by improving epithelial barrier functions and inhibiting E. coli adhesion. Overall, these results show that lycopene may be a promising component for the prevention and treatment of colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Licopeno/farmacologia , Escherichia coli , Células CACO-2 , Mucosa Intestinal/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
16.
J Transl Med ; 22(1): 308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528541

RESUMO

BACKGROUND: Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS: This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS: The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION: In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Álcool Feniletílico/análogos & derivados , Simbióticos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Azeite de Oliva , NF-kappa B , Ocludina , Modelos Animais de Doenças , Colite/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Colo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL
17.
Food Funct ; 15(7): 3327-3339, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38465411

RESUMO

Bacteroides is a common intestinal bacterium closely associated with host colitis. However, relevant studies have been focused on the genus level, which could not identify the major Bacteroides species associated with intestinal disease. Thus, we have evaluated the Bacteroides species structure in healthy people and mouse intestinal tracts and explored the change in major Bacteroides species during colitis development. The results demonstrated that B. uniformis with a high abundance in the intestinal tract of healthy people and mice may be a core species that contributes to colitis remission. The results of animal experiments reported that B. uniformis FNMHLBE1K1 (1K1) could alleviate the severity of colitis and enhance the expression of the tight junction protein occludin by regulating gut microbiota. Notably, the protective roles of 1K1 may be attributed to some specific genes. This study revealed that B. uniformis is a key microbe influencing the occurrence and development of colitis and it provides a scientific basis for screening the next generation of probiotics.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Bacteroides/genética , Intestinos , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
18.
Int J Biol Macromol ; 265(Pt 1): 130959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499127

RESUMO

Phellinus linteus, a rare medicinal fungus, displays strong antitumor and anti-inflammatory activities because of its active metabolites, particularly polysaccharides. We investigated effects of P. linteus acidic polysaccharide (PLAP) on amelioration of dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in a mouse model, and associated mechanisms. PLAP treatment alleviated major UC symptoms (weight loss, reduced food intake, increased disease activity index), and ameliorated histopathological colon tissue damage, reduced levels of pro-inflammatory factors (TNF-α, IL-6, IL-1ß), enhanced anti-inflammatory factor IL-10 level, reduced levels of oxidative stress-related enzymes iNOS and MPO, and enhanced expression of tight junction proteins (ZO-1, occludin, claudin-1). qPCR analysis revealed that PLAP downregulated phosphorylation levels of p65 and p38 and transcriptional level of TLR-4. High-throughput sequencing showed that PLAP restored gut microbiota diversity and species abundances in the UC model, and gas chromatographic analysis showed that it increased levels of beneficial short-chain fatty acids. Our findings indicate that PLAP has strong potential for development as an anti-UC agent based on its reduction of inflammation and oxidative stress levels, modulation of gut microbiota composition, and promotion of normal intestinal barrier function.


Assuntos
Basidiomycota , Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Inflamação , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Colo , Camundongos Endogâmicos C57BL
19.
Eur J Pharmacol ; 967: 176318, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309678

RESUMO

In this study, we used alkaloids from Sophora flavescens to inhibit the SASP, leading to fibroblast-into-myofibroblast transition (FMT) to maintain intestinal mucosal homeostasis in vitro and in vivo. We used western blotting (WB) and immunofluorescence staining (IF) to assess whether five kinds of alkaloids inhibit the major inflammatory pathways and chose the most effective compound (sophocarpine; SPC) to ameliorate colorectal inflammation in a dextran sulfate sodium (DSS)-induced UC mouse model. IF, Immunohistochemistry staining (IHC), WB, disease activity index (DAI), and enzyme-linked immunosorbent assay (ELISA) were conducted to investigate the mechanism of action of this compound. Next, we detected the pharmacological activity of SPC on the senescence-associated secretory phenotypes (SASP) and FMT in interleukin 6 (IL-6)-induced senescence-like fibroblasts and discussed the mucosal protection ability of SPC on a fibroblast-epithelium/organoid coculture system and organ-on-chip system. Taken together, our results provide evidence that SPC alleviates the inflammatory response, improves intestinal fibrosis and maintains intestinal mucosal homeostasis in vivo. Meanwhile, SPC was able to prevent IL-6-induced SASP and FMT in fibroblasts, maintain the expression of TJ proteins, and inhibit inflammation and genomic stability of colonic mucosal epithelial cells by activating SIRT1 in vitro. In conclusion, SPC treatment attenuates intestinal fibrosis by regulating SIRT1/NF-κB p65 signaling, and it might be a promising therapeutic agent for inflammatory bowel disease.


Assuntos
Alcaloides , Colite Ulcerativa , Colite , Matrinas , Animais , Camundongos , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-6/efeitos adversos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , NF-kappa B/metabolismo , Sirtuína 1
20.
J Sci Food Agric ; 104(7): 3992-4003, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323719

RESUMO

BACKGROUND: Resveratrol (Res) is promising food functional factor with favorable antioxidant and anti-inflammatory properties, although its poor water solubility and low bioavailability limit extensive application. Therefore, in combination with another promising polysaccharide (Mesona chinensis polysaccharides, MCP), Res-loaded food nanocarriers (ResNPs) were developed to increase its water solubility, bioactivity and targeting properties. ResNPs were then applied to alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis. RESULTS: Resveratrol can be well encapsulated in MCP-based nanoparticles in an amorphous state, improving its water solubility. ResNPs showed pH-response controlled release behavior in the gastrointestinal tract and increased the enrichment of Res in the colon. In vivo experiments of ResNPs against DSS-induced ulcerative colitis (UC) revealed that ResNPs significantly improved UC symptoms, modulated intestinal inflammation and down-regulated oxidative stress levels compared to free Res. ResNPs also play an positive role with respect to inhibiting the mitogen-activated protein kinase pathway and promoting the expression of tight junction proteins. In addition, ResNPs improved the species composition and relative abundance of intestinal flora in UC mice, which effectively regulated the balance of intestinal flora and promoted the production of short-chain fatty acids. CONCLUSION: These results suggest that MCP-based nanoparticles can effectively improve the solubility of resveratrol and enhance its in vivo bioactivity. Moreover, the present study also provides a new strategy for the prevention and treatment of UC with food polyphenol. © 2024 Society of Chemical Industry.


Assuntos
Colite Ulcerativa , Colite , Nanopartículas , Zeína , Camundongos , Animais , Resveratrol/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Nanopartículas/química , Concentração de Íons de Hidrogênio , Água/farmacologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...